EM-38 DD UNIT DATA CONVERSION AND COMPUTER INTERFACE BOARD

DEC. 10, 2003

DESCRIPTION

The optional data conversion and computer interface module converts the analog output signal from EM38 receiver into digital data and sends the data together with other information to a data logging computer via the on-board RS-232 port. The conversion and sending are automatic and continuous, no trigger is needed.

INTERFACE CABLE

The RS-232 port is provided via a 10-pin circular socket mounted on the EM38 body. A 10-position circular connector to 9-position sub-D female connector cable is supplied with each system for connection between EM38 and the data logging computer.

Only two lines are used from the one-way RS-232 communication. These two lines are:

10-pin circular 9-pin sub-D function from EM31 to computer

H pin 5 GROUND

D (TXD) pin 2 (RXD) RS-232 DATA

RS-232 CONFIGURATION

The port is configured as a Date Communication Equipment. No handshaking is used. It is initialized as follows:

Baud rate: 9600 parity: none data bits: 8 stop bit: 1

DATA RATE

10 records per second (approximate)

EM38 DATA RECORD FORMAT

Each data record consists of 8 bytes detailed below:

Byte 1 (ASCII) " T " -- start byte

Byte 2 (information byte. See next section for marker, mode,

phase and range interpretation.)

Byte 3 (ASCII) + or -, sign of master

Byte 4 (ASCII) thousand's of master

Byte 5 (ASCII) hundred's of master

Byte 6 (ASCII) ten's of master

Byte 7 (ASCII) one's of master

Byte 8 (ASCII) + or -, sign of slave

Byte 9 (ASCII) thousand's of slave

Byte 10 (ASCII) hundred's of slave

Byte 11 (ASCII) ten's of slave

Byte 12 (ASCII) one's of slave

Byte 13 (ASCII) carriage return

INFORMATION BYTE INTERPRETATION

The bit format of the information byte is:

BIT	DECIMAL	VALUE AND	MEANING
7	128	1	not used
6	64		<pre>1 when trigger switch is pressed, 0 otherwise</pre>
5	32	1	not used
4	16		1 Gain = 8 0 Gain = 1
3	8	0	o dain – i
2	4		<pre>1 quadrature phase (conductivity) 0 Inphase measurements</pre>
1	2	RANGE =	1 for sensitivity 1000 mS/m
0	1	0	0 for sensitivity 100 mS/m not used

MULTIPLICATION FACTORS

RANGE 1 and RANGE 2 represent the sensitivity as follows:

COMPONENT	SENSITIVITY	RANGE	MULTIPLICATION
Conductivity	1000	1	-1/Gain
Inphase	1000		-0.0288/Gain
Conductivity	7 100	0	-0.1/Gain
Inphase	100		-0.00288/Gain

Multiply readings by above factors to obtain results in $\ensuremath{\mathsf{mS/m}}$ and ppt.